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Abstract RECOMI (Repeated correlation matrix inversion) is a polynomially fsi algorithm for 
searching optimally stable solutions of the perceprron learning problem. For random unbiased 
and biased pattems it is shown that the algorithm is able to find optimal solutions if any exist, 
in a( worst O(N4) floating point operations. Even beyond the critical storage capacity uc the 
algorithm is able to find locally stable solutions (with negative stability) at the same speed. 
There are no divergent timescale$ in the leaming process. A full proof of convergence cannot 
yet be given, only major constituena of a proof we shown. 

Spin-glass models of neural networks and their application as an associative memory have 
been of great interest in the last few years [l-lo]. One major issue of the field is the 
question of training networks, that is the construction of a synaptic matrix in order to 
store given information. In this paper I will present a training algorithm that i s  able to 
find solutions of the perceptron problem of optimal stability in finite time. Unlike other 
algorithms, such as Minover presented by Krauth and Mkzard [5] or AdaTron by Anlauf 
and Biehl [6] ,  this algorithm not only approximates optimal solutions, it actually finds the 
optimal solutions. Furthermore, there are no divergent timescales in the solution of the 
problem. Minover and AdaTron both have diverging training times as the critical storage 
capacity c+ is approached [6,7], whereas this algorithm does not. Therefore it can also be 
used beyond CY, in the region of broken replica symmetry, where it finds local optima of 
negative stability. A similar algorithm was proposed by Rujdn [SI, which also finds optimal 
perceptrons in finite time, but cannot advance beyond c&. 

Like the pseudo-inverse solution of the perceptron problem [9,10] this algorithm uses 
inversion of pattern correlation matrices for searching (optimal) perceptron couplings. As 
matrix inversion has to be done repeatedly, the algorithm was called RECOMI-Repeated 
correlation matrix inversion. As was shown by Opper [7] the problem of finding an optimal 
perceptron is the problem of finding the subset of embedded training patterns with minimal 
local fields. RECom is able to find this subset of patterns iteratively in finite time. The 
coupling vector is then just the pseudo-inverse of the respective pattern correlation matrix. 

I consider a network of N + 1 neurons Si = f l ,  i = 1,. . . , N + 1, coupled through 
synaptic efficacies Jij (without taking self-couplings into account, i.e. Jii = 0 Vl ) ,  The 
dynamics of the system is taken to be a simple zero-temperature Monte Carlo process: 
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The purpose of perceptron training algorithms is to find couplings Jij  such that p patterns 
0: = *l, p = 1,. . . , p ,  become fixed points of the dynamics. That a 3” = (SI , . . . , 

is 

~ $ ‘ C J ~ ~ $ > K > O  i = l ,  ..., N + I  p - 1 ,  ..., p .  (2) 
i(P) 

The problem can be reformulated by looking at the single neurons (or simple 

(3 ) 

percephons) of the network, e.g. neuron N + 1. With 
P E P  P tt -qN+,qi i = 1 ,... , N fi  = 1, ..., p 

one now has to find couplings J j .  i = I , .  . . , N, such that 

h , = x J & ; > K  2 0  p = l ,  . . . , p .  (4) 

maximize K = min{h,} under the constraint I J I  = 1 .  

i 

If the norm of J is fixed, e.g. I J I  = I ,  it is possible to define what is meant by ‘optimal 
solutions’ of the given problem: 

(5 ) 

With maximal K one expects to have maximum stability against input noise, i.e. maximal 

From the point of view of mathematical optimization it suitable to reformulate the 

(6) 
(7) 

I will use this formulation of the problem later in this paper. Applying the Kuhn- 
Tucker theorem of optimization theory 1111 it can be shown [7] (see also [6]) that an 
optimal solution, for K > 0, can always be written in the form 

P 

basins of attraction in a network of neurons. 

problem. With J + JJK~ one gets an equivalent formulation of problem (5): 
minimize I J I  under the constraints h, = J‘“ > +I  V p  (for K > 0) 
maximize ILI under the consmints h, = L*g, 2 -1 Vp (for K < 0). 

- J =Ex&’ where x, > O  V p e  r (8) 
@Er 

with 

otherwise. 
h, = JTcp 

For K c 0 the same argument holds for all local optima, but with x, < 0, Vp E r. r is 
the set of ‘embedded’ patterns, r G 11, . . . , p } ,  The x,  are called the embedding strengths 
of solution J .  Anlauf and Biehl have also shown 161 that for K > 0 this solution is unique 
(which, in general, is not the case for K c 0), i.e. two solutions J and J* of the form (8) 
or (9) are always identical J J*. Note that if (5,1 p E r] is a set of linearly independent 
vectors, e.g. if the patterns are in a general position and card(r) < N the choice of the x,, 
is unambiguous. On the other hand, if one has a solution of the form (8) or (9) it must be 
the global optimum of the problem. 

In the following sections I am going to describe the RECOMI algorithm. RECOMI can 
solve the stated problem of finding optimal perceptrons of the form (8) or (9) in finite time, 
if the training patterns are in a general position, i.e. if every subset {e,] with not more than 
N elements (card(($,)) < N )  is linearly independent. It does so in not more than O(N4) 
floating point operations. There is no divergence of learning times at the critical storage 
capacity ctC = 2 (for unbiased random patterns), where (Y = p j N .  I am going to show this 
numerically. In the last section I will deduce some important constituents of a proof of 
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convergence, unfortunately a full proof cannot yet be given. I will analyse the properties 
of locally stable solutions of the optimization problems (6) and (7). It can be shown that 
RECOMI always stops in a local optimum. If an optimal solution with K > 0 exists, RECOMI 
must stop there. Otherwise it is going to stop in one of the locally stable solutions with 
K < O .  

Description of the algorithm 

RECOW is an iterative algorithm. It calculates coupling vectors = E, $)“ and finds 
after a finite number of iterations a solution of the form (8) and (9). if it exists. As we will 
see later, the algorithm must be initialized with positive embedding strengths x;’ > 0, e.g. 
Hebbian couplings 

J(0) = zy. 
P 

For numerical stability JL‘) is normalized to 1 after each iteration. Let Cr be the correlation 
mahix of the patterns in r g (1,.  . . , p ) :  

Cr = &Tgv)p,uEr. (10) 

Iteration loop 

Let J(‘) be given (from now on I drop the index t ) :  

K = min(h,] = min(JTcp}. 

Let r be the subset of patterns with minimal local field h,: 
c P -  

r = (plh,, = K]. 
We now want to alter J 

P 
- J + J ’ = E ( x , + & A x , , ) ~  

p=l 

so that for all patterns in r the local fields grow equally 

h: =J’Tcp  - = K + E  V p  E r .  (15) 
We therefore choose Ax to be the pseudo-inverse [9,10] of the patterns in r: 

otherwise, 
If the training patterns e are in general position, Cr becomes singular if and only if 

the number of patterns in r:?ard(r), is greater than N. Then RECOMI must stop, with J”’ 
being the best solution found. Nevertheless RECOMI is able to find optimal solutions as I 
will show in the last section of this paper. 

Now we want to determine the learning rate E in a way that all local fields h; are 
greater or equal K + E :  

h: =J”ep - > K + E  Vp E {I, . .  ., p ]  (17) 
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where E = 
for pattern p: 

is the value of the learning rate with which we get the equality hi, = K + E  

To fulfil equation (17) E must be smaller or equal to all relevant, i.e. all positive, E,. We 
therefore define the set 0: 

0 = ( ~ ~ l p  @ r and 0 < E, < CO}. (19) 

E = min 0.  (20) 

If 0 is not empty we can determine 6 as 

If 0 is empty, we set E = CO. i.e. J'= CpGr Ax,,S'(. and stop the iteration. 
Now J(f-c') = J ' / l J ' I  and we continue at the beginning of the iteration loop. It is easy 

to show that always K( '+ ' )  = (d') + & ) / I J ' I  > K( ' )  (see the appendix). If no solution with 
positive K can be found the algorithm typically stops with J' = 0, as will be shown later. 
(It should be noted that this is the most sensitive part of the algorithm. Rounding emors 
must be controlled when calculating the norm of J'.) Then J(') is taken as the best solution 
found by RECOMI. 

Opt~IIlR~ RECOMI 

The algorithm I have described so far does not yet find optimal solutions of the form (8) and 
(9). As the changes of embedding strengths Axp might be negative in (16) the xp might 
also become negative in the end. But already this version of the algorithm does find nearly 
optimal solutions K z 0, as can be seen in figure 1, where I compare results for unbiased 
random pattems (N = 100) with Gardner's result [3]. Therefore I refer to this version of 
RECOMI as 'nearly optimal RECOMI'. 

Figure 1. Comparison of REMM1 with Gwdner's mull, N = 100. 100 scts of unbiased (m = 0) 
nnd biased (m = 0.8) mdom binary pattems far each measurement. 
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To find optimal solutions of the form (8) and (9) it is necessary to start with positive 
embedding strengths xfl > 0, and to make sure that they stay positive throughout the 
iteration, i.e. Axfl 2 0. This is possible by altering (16). r must be replaced by a subset 
r’ E r with the following properties: 

It is always possible to find such a subset r‘ (as long as Cr itself is regular), because 
Ever, Axv$’ - then is the (unique) optimal perceptmn for the correct mapping of the patterns 

r‘ can easily be determined. The following algorithm proved to work in all cases tested 
(about U(105) algorithm runs). I cannot yet prove its convergence analytically. This has to 
be done in later work. To find r‘ one can proceed as follows: 
(i) Start with r’ = r. 
(U) Calculate Axfl = Ever, (CF’)flV (p E r”); AxQ = min,(Ax,]: if Ax, < 0 remove e 

from r’ and go to (ii) else go to (iii). 
(iii) Calculate Ah, = (E,,, Ax.$”)‘~P (p E r \ r’); Ah, = min,(Ah,}; if Ahr < 1 

add U to r’ and go to (ii) elsexTOF. 
By replacing r by r’ in (16) RECOMI is able to find optimal solutions. I refer to this 

improved version of the algorithm as ‘optimal RECOMI’. In figure 2 I check for unbiased 
random binary patterns (N = loo), how often the algorithm stops in optimal solutions with 
K z 0, and in locally optimal solutions with K < 0. For every value of 01 = p / N  100 
different pattern sets are tested. In very rare cases (not in this figure) the algorithm only gets 
close to but does not reach optimal solutions: trying to invert nearly singular correlation 
matrices can cause failure of the inversion subroutines. 

In figure 1 I compare results for unbiased and biased random binary patterns with 
Gardner’s result [3]. ?be patterns qf are chosen with a probability distribution p ( q f )  = 

P E  r. 

1.5 2.5 

Figure 2. Optimal REXOMI, N = 100, 100 sets of unbiased random binary patterns for each 
value of (I, 
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N 

"e 3. Convergence time against system size for optimal RECOMI (unbiased random binmy 
patterns). 

~ ( 1  I - m)8($ + 1) + ;(I + m) 8(# - I) ,  using m = 0 (unbiased) and m = 0.8 (biased), 
and the 6: calculated according to (3). Within the ermr bounds there is no difference to 
be seen between optimal and nearly optimal solutions below 01, (K > 0). In the range of 
replica symmetry breaking 01 > 01, (K c 0) optimal RECOM clearly performs better than 
the simpler version of the algorithm. Here it cannot be expected that the algorithm finds 
a global stability optimum, as it gets trapped in one of the many local optima, which will 
be shown in the last section of this paper. Note that for the biased patterns (m = 0.8) at 
N = 100 one still has to take finitesize effects into account: the measured points are all 
optimal solutions, but yet still lie a little bit below the Gardner curve. Also note that the 
theoretical lines are all calculated in replica symmetric approximation, i.e. they must be 
corrected for negative K, where replica symmetry is no longer valid. 

In figure 3 I train perceptrons of different sizes N with unbiased random binary patterns. 
Convergence time is plotted against system size N for different values of the storage capacity 
01. The most expensive part of the algorithm, in the IargeN limit. is matrix inversion, which 
is of 0 ( N 3 )  for each single inversion. Nearly optimal RECOMI therefore is, in the worst 
case, of O(CLI i3) = 0(N4), as card(r) grows at least by one in each iteration step. For 
optimal RECOMI one cannot give such a simple derivation of convergence times, as card(r) 
can also shrink in the leaning process. But here convergence time is also bounded from 
above by 0(N4). In figure 3 I count the number of floating point operations (+-*/) optimal 
RECOMI needs to find solutions. As below N = 100 convergence time is still dominated by 
other operations apart from matrix inversion, I only plot the matrix inversion part here. All 
other operations iiIe of 0 ( N 3 )  or below. Just as predicted for nearly optimal RECOMI the 
optimal version of the algorithm converges in 0(N4) or less floating point operations. 

In figure 4 I plot convergence time (i.e. number of floating point operations) against 
the storage capacity a. Again the perceptron ( N  = 100) was trained with unbiased random 
binary patterns. There is no divergence at 01 = 0 1 ~  = 2. For small 01 the two versions of the 
algorithm differ only slightly, as nearly optimal REC~MI also often finds optimal solutions 
(see also figure I). For larger values of 01 the convergence times evolve differently. 
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0.5 0.75 1 1.5 2 3 4 
alpha 

Figure 4. Convergence time against storage capacity (I (unbiased mdom binary panems, 
N = l(10). There is  no divergence L nc = 2, 

Analysis of local stability optima: towards a proof of convergence 

I cannot yet give a full proof of convergence of RECOMI, but some major components can 
already be deduced. For this reason I want to consider the role of local stabilib optima. It 
is useful here to use the problem formulations (6) (for K > 0) and (7) (for K c 0). If I write 
a *-sign io the following text, the + always refers to the case K > 0 and the - to K c 0. 

The problem (6) and (7) can now be formulated as 
minimizefw = f. f~ = f. .'C. 
under the constraints: 
h, =J'" = (CXJ, > + I  (24) 

r = { I h,=(c& = & 1 ] .  (25) 

p = 1, ..., p .  
r is the set of patterns with minimal local field: 

Let S2 be the set of all possible search directions A&, which do not violate the inequality 
constraints (24): 

n = (AX E RP((CA& 2 o vp E r ]  . (26) 
A solution J is locally optimal if and only if 

[ V , f ( ~ J ] ~ h x - = i 2 & ~ C A ~ 2 0  VAxe 5 2 .  (27) 
I now prove the important theorem, that if there is a solution with positive stability 

K z 0 there cannot be locally stable solutions J with negative stability K c 0 and x,, 2 0 - - 
vp, C,x, 0. 

If there is a solution with K > 0 there must be a solution of the form (e.g. the optimal 
perceptron) 

(28) 

Let us assume J = c, x,&, is locally optimal with K = min,[L'g@} < 0 and x, > 0 V p ,  
E, x ,  > 0. That means (equation (27)) 

- x'CAX < 0 VAx E 52 .  (29) 

J' = Z x E g ,  with J -7 i p -  - (CL*), 2 K* > 0 V p .  - 
Ir 
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As (CL*), > K *  > 0 Vp, we have 
ALE&* E L-2 

in contradiction to (29)! Therefore such a vector J cannot exist. We will see below that 
optimal R E c o M l  always stops in (local) optima which, by definition of the algorithm, are of 
the form xI1 > 0 Vp and c , x P  > 0. So if there is any solution with K > 0 RECOMI can 
only stop in the global optimum of the problem, because then there are no other optima of 
that form. 

To show this, I have to make several assumptions, which I cannot yet prove: (i) the 
algorithm described in section 'optimal RECOMI' for deriving i" really always works. (ii) 
The size of r, card(F), grows not more than by one in each iteration step, especially not 
from card(r) c N to card(r) > N .  (iii) RECOMI really terminates in finite time. About 
this last point one can only say that K(')  is a strictly monotonical function of f (see the 
appendix), i.e. there is always an attractor of the training dynamics. 

If these three assumptions are correct, RECOMI stops in a (local) optimum, which is the 
global one, if solutions K > 0 exist. To show this I have to consider the three possible ways 
the algorithm does stop: (i) @ is empty, i.e. E becomes infinite, (ii) J' is zero and (iii) Cr 
is singular. 
(i) Q, is empty: This is the most simple case. Then, by definition, J' = &, AX&", 

which is an optimal solution of the form (8) and (9). This is the usual way RECOMI 
stops if solutions K > 0 exist. 

(ii) J' is zero: then J") = --E &,, Ax&@., Applying the Kuhn-Tucker theorem this is 
a locally stable solution for K c 0 (just like (8) and (9) for K > 0). As J ( I )  is coded 
in the form x p  > 0 V p  and 1, xP > 0 there cannot be solutions with K > 0 as was 
shown above. This is the usual way RECOMl stops if no solutions K > 0 exist. 

(iiii) Cr is singular: then card(r) > N (because the training patterns are in a general 
position). According to our assumption, card(r) must have been N in the iteration 
step before. r' must have been equal to r because otherwise card(r) would not have 
grown. As (p'lp E r] does span W N ,  J('-') is completely determined by the local fields 
- J ( f - ' ) T p '  p E r. i.e. L('-') - Axpip,  which is a local optimum. Therefore case 
(iii), inprincipal. never occurs, the algorithm stops before in (i) or (ii). 

In practice case (iii) does occur, as sometimes nearly singular correlation matrices cannot 
be inverted by the inversion subroutines because of numerical restrictions. 

Conclusion 

In this paper I have presented a perceptron learning algorithm, which is able to find the 
optimal percephon in finite time, i.e. in S(N4) floating point operations. The algorithm 
even works beyond the critical storage capacity ae, where it finds solutions of negative 
stability that are locally optimal. Calculating the stability curve K ( o [ )  for random training 
patterns exactly reproduces Gardner's predictions [31. A full proof of convergence could 
not yet be given, but major constituents were already shown. As the algorithm works very 
reliably, it can be expected that a full proof of convergence can be found. Furthermore, it is 
planned to generalize the algorithm to two-layer perceptrons with fixed output. First results 
are very promising, yet it cannot be expected that the algorithm finds globally optimal 
solutions, because replica-symmetry breaking effects are very strong in this case. 
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Appendix 

In this appendix I will show that K(‘) is a strictly monotonic function o f t :  

That means K(’+’) z K“) as long as RECOMI has not terminated. 0 
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